MathDB
weird inequality

Source: Ireland 2007

July 6, 2009
inequalitiesinequalities unsolved

Problem Statement

Let r r and n n be nonnegative integers such that rn r \le n. (a) (a) Prove that: \frac{n\plus{}1\minus{}2r}{n\plus{}1\minus{}r} \binom{n}{r} is an integer. (b) (b) Prove that: \displaystyle\sum_{r\equal{}0}^{[n/2]}\frac{n\plus{}1\minus{}2r}{n\plus{}1\minus{}r} \binom{n}{r}<2^{n\minus{}2} for all n9 n \ge 9.