MathDB
Inequality

Source: Moldova JTST 2005

March 1, 2018
inequalities

Problem Statement

Let a1,a2,...ana_1,a_2,...a_n be positive numbers. And let s=a1+a2+...+ans=a_1+a_2+...+a_n,and p=a1a2...anp=a_1*a_2*...*a_n.Prove that 2np1+s1!+s22!+...+snn!2^{n}*\sqrt{p} \leq 1+\frac{s}{1!}+\frac{s^2}{2!}+...+\frac{s^n}{n!}