MathDB
Inequality with product equal to 1

Source: Moldova TST Problem 6

April 1, 2015
inequalities

Problem Statement

Let a,b,ca,b,c be positive real numbers such that abc=1abc=1. Prove the following inequality: \\a3+b3+c3+aba2+b2+bcb2+c2+cac2+a292a^3+b^3+c^3+\frac{ab}{a^2+b^2}+\frac{bc}{b^2+c^2}+\frac{ca}{c^2+a^2} \geq \frac{9}{2}.