MathDB
a_n = sum of a_floor(n/k) + 1

Source: 2012 Indonesia Round 2.5 TST 2 Problem 4

May 21, 2012
floor functionnumber theory unsolvednumber theory

Problem Statement

The sequence aia_i is defined as a1=1a_1 = 1 and an=an2+an3+an4++ann+1a_n = a_{\left\lfloor \dfrac{n}{2} \right\rfloor} + a_{\left\lfloor \dfrac{n}{3} \right\rfloor} + a_{\left\lfloor \dfrac{n}{4} \right\rfloor} + \cdots + a_{\left\lfloor \dfrac{n}{n} \right\rfloor} + 1 for every positive integer n>1n > 1. Prove that there are infinitely many values of nn such that annmod2012a_n \equiv n \mod 2012.