MathDB
product of integer lengths 6 line segments is a perfect square

Source: Dutch NMO 2010 p3

September 6, 2019
geometryPerfect SquareparallelogramInteger

Problem Statement

Consider a triangle XYZXYZ and a point OO in its interior. Three lines through OO are drawn, parallel to the respective sides of the triangle. The intersections with the sides of the triangle determine six line segments from OO to the sides of the triangle. The lengths of these segments are integer numbers a,b,c,d,ea, b, c, d, e and ff (see figure). Prove that the product abcdefa \cdot b \cdot c\cdot d \cdot e \cdot f is a perfect square.
[asy] unitsize(1 cm);
pair A, B, C, D, E, F, O, X, Y, Z;
X = (1,4); Y = (0,0); Z = (5,1.5); O = (1.8,2.2); A = extension(O, O + Z - X, X, Y); B = extension(O, O + Y - Z, X, Y); C = extension(O, O + X - Y, Y, Z); D = extension(O, O + Z - X, Y, Z); E = extension(O, O + Y - Z, Z, X); F = extension(O, O + X - Y, Z, X);
draw(X--Y--Z--cycle); draw(A--D); draw(B--E); draw(C--F);
dot("AA", A, NW); dot("BB", B, NW); dot("CC", C, SE); dot("DD", D, SE); dot("EE", E, NE); dot("FF", F, NE); dot("OO", O, S); dot("XX", X, N); dot("YY", Y, SW); dot("ZZ", Z, dir(0)); label("aa", (A + O)/2, SW); label("bb", (B + O)/2, SE); label("cc", (C + O)/2, SE); label("dd", (D + O)/2, SW); label("ee", (E + O)/2, SE); label("ff", (F + O)/2, NW); [/asy]