MathDB
Bundeswettbewerb Mathematik 1981 Problem 1.1

Source: Bundeswettbewerb Mathematik 1981 Round 1

September 22, 2022
Digitsnumber theorypowers

Problem Statement

Let aa and nn be positive integers and s=a+a2++ans = a + a^2 + \cdots + a^n. Prove that the last digit of ss is 11 if and only if the last digits of aa and nn are both equal to 11.