MathDB
Prove that a ∈ {0, 1, . . ., n} and z_k ∈ {1, i}

Source:

October 7, 2010
trigonometrycomplex numbersalgebra unsolvedalgebra

Problem Statement

Let aRa \in \mathbb R and let z1,z2,,znz_1, z_2, \ldots, z_n be complex numbers of modulus 11 satisfying the relation k=1nzk3=4(a+(an)i)3k=1nzk\sum_{k=1}^n z_k^3=4(a+(a-n)i)- 3 \sum_{k=1}^n \overline{z_k} Prove that a{0,1,,n}a \in \{0, 1,\ldots, n \} and zk{1,i}z_k \in \{1, i \} for all k.k.