MathDB
Integral with floor function

Source:

February 7, 2019
calculusintegrationlimitsalgebrafloor functionfunction

Problem Statement

Let a,b,nNa, b, n \in \mathbb{N}, with a,b2.a, b \geq 2. Also, let I1(n)=01anxdxI_{1}(n)=\int_{0}^{1} \left \lfloor{a^n x} \right \rfloor dx and I2(n)=01bnxdx.I_{2} (n) = \int_{0}^{1} \left \lfloor{b^n x} \right \rfloor dx. Find limnI1(n)I2(n).\lim_{n \to \infty} \dfrac{I_1(n)}{I_{2}(n)}.