MathDB
Romania National Olympiad 2014

Source:

March 22, 2018
complex numbersinequalities

Problem Statement

Let nN,n2n \in \mathbb{N} , n \ge 2 and a0,a1,a2,,anC;an0 a_0,a_1,a_2,\cdots,a_n \in \mathbb{C} ; a_n \not = 0 . Then:
P. anzn+an1zzn1++a1z+a0an+a0|a_nz^n + a_{n-1}z^z{n-1} + \cdots + a_1z + a_0 | \le |a_n+a_0| for any zC,z=1z \in \mathbb{C}, |z|=1 Q. a1=a2==an1=0a_1=a_2=\cdots=a_{n-1}=0 and a0/an[0,)a_0/a_n \in [0,\infty)
Prove that PQ P \Longleftrightarrow Q