MathDB
x In Terms of a,b,c

Source:

February 1, 2009

Problem Statement

If \frac {xy}{x \plus{} y} \equal{} a, \frac {xz}{x \plus{} z} \equal{} b, \frac {yz}{y \plus{} z} \equal{} c, where a,b,c a,b,c are other than zero, then x x equals: (A)\ \frac {abc}{ab \plus{} ac \plus{} bc} \qquad(B)\ \frac {2abc}{ab \plus{} bc \plus{} ac} \qquad(C)\ \frac {2abc}{ab \plus{} ac \minus{} bc} (D)\ \frac {2abc}{ab \plus{} bc \minus{} ac} \qquad(E)\ \frac {2abc}{ac \plus{} bc \minus{} ab}