MathDB
Sequence

Source: UMD 2023 I #22

October 22, 2023
algebraUMD

Problem Statement

A sequence a1,a2,a_1, a_2, \ldots satisfies a1=52a_1 = \dfrac 52 and an+1=an22a_{n + 1} = {a_n}^2 - 2 for all n1.n \ge 1. Let MM be the integer which is closest to a2023.a_{2023}. The last digit of MM equals a. 0b. 2c. 4d. 6e. 8 \mathrm a. ~ 0\qquad \mathrm b.~2\qquad \mathrm c. ~4 \qquad \mathrm d. ~6 \qquad \mathrm e. ~8