MathDB
Prove that $0\leq a_{n}-a_{n+1}<\frac{2}{n^2}, \forall n\in\mathbb{N}.$

Source: Moldova TST 1997

August 8, 2023

Problem Statement

Let (an)nN(a_n)_{n\in\mathbb{N}} be a sequence of positive numbers such that an2an+1+an+20 and j=1naj1,nN.a_n-2a_{n+1}+a_{n+2}\geq 0 \text{ and } \sum_{j=1}^{n} a_j \leq 1, \forall n\in\mathbb{N}. Prove that 0anan+1<2n2,nN.0\leq a_{n}-a_{n+1}<\frac{2}{n^2}, \forall n\in\mathbb{N}.