MathDB
Miklós Schweitzer 2007 Problem 3

Source:

March 3, 2017
Miklos Schweitzernumber theory

Problem Statement

Denote by ω(n)\omega (n) the number of prime divisors of the natural number nn (without multiplicities). Let F(x)=maxnxω(n)G(x)=maxnx(ω(n)+ω(n2+1))F(x)=\max_{n\leq x} \omega (n) \,\,\,\,\,\,\,\,\,\,\,\,\, G(x)=\max_{n\leq x} \left( \omega (n) + \omega (n^2+1)\right) Prove that G(x)F(x)G(x)-F(x)\to \infty as xx\to\infty.
(translated by Miklós Maróti)