MathDB
J 3

Source:

May 25, 2007
modular arithmeticnumber theorygreatest common divisorDivisor Functions

Problem Statement

If pp is a prime and nn an integer such that 1<np1<n \le p, then ϕ(k=0p1nk)0  (modp).\phi \left( \sum_{k=0}^{p-1}n^{k}\right) \equiv 0 \; \pmod{p}.