MathDB
S_m(n) \le n + m (\sqrt[4]{2^m}-1), S_m(n)=\sum \sqrt[k^2]{k^m}]

Source: Austrian - Polish 1998 APMC

May 4, 2020
inequalitiesSumalgebra

Problem Statement

For positive integers m,nm, n, denote Sm(n)=1kn[kmk2]S_m(n)=\sum_{1\le k \le n} \left[ \sqrt[k^2]{k^m}\right] Prove that Sm(n)n+m(2m41)S_m(n) \le n + m (\sqrt[4]{2^m}-1)