MathDB
Problems
Contests
National and Regional Contests
Brazil Contests
Brazil National Olympiad
2015 Brazil National Olympiad
4
Divisors
Divisors
Source: Problem 4, Brazilian MO 2015
October 20, 2015
number theory proposed
number theory
Problem Statement
Let
n
n
n
be a integer and let
n
=
d
1
>
d
2
>
⋯
>
d
k
=
1
n=d_1>d_2>\cdots>d_k=1
n
=
d
1
>
d
2
>
⋯
>
d
k
=
1
its positive divisors. a) Prove that
d
1
−
d
2
+
d
3
−
⋯
+
(
−
1
)
k
−
1
d
k
=
n
−
1
d_1-d_2+d_3-\cdots+(-1)^{k-1}d_k=n-1
d
1
−
d
2
+
d
3
−
⋯
+
(
−
1
)
k
−
1
d
k
=
n
−
1
iff
n
n
n
is prime or
n
=
4
n=4
n
=
4
. b) Determine the three positive integers such that
d
1
−
d
2
+
d
3
−
.
.
.
+
(
−
1
)
k
−
1
d
k
=
n
−
4.
d_1-d_2+d_3-...+(-1)^{k-1}d_k=n-4.
d
1
−
d
2
+
d
3
−
...
+
(
−
1
)
k
−
1
d
k
=
n
−
4.
Back to Problems
View on AoPS