MathDB
Problems
Contests
National and Regional Contests
Romania Contests
District Olympiad
2014 District Olympiad
2
|a-b|
|a-b|
Source: Romania District Olympiad 2014,grade VII(problem 2)
March 8, 2014
inequalities
inequalities proposed
algebra
Problem Statement
Let real numbers
a
,
b
,
c
a,b,c
a
,
b
,
c
such that
∣
a
−
b
∣
≥
∣
c
∣
,
∣
b
−
c
∣
≥
∣
a
∣
,
∣
c
−
a
∣
≥
∣
b
∣
.
\left| a-b \right|\ge \left| c \right|,\left| b-c \right|\ge \left| a \right|,\left| c-a \right|\ge \left| b \right|.
∣
a
−
b
∣
≥
∣
c
∣
,
∣
b
−
c
∣
≥
∣
a
∣
,
∣
c
−
a
∣
≥
∣
b
∣
.
Prove that
a
=
b
+
c
a=b+c
a
=
b
+
c
or
b
=
c
+
a
b=c+a
b
=
c
+
a
or
c
=
a
+
b
.
c=a+b.
c
=
a
+
b
.
Back to Problems
View on AoPS