a) Let x1,x2,x3,y1,y2,y3∈R and aij=sin(xi−yj),i,j=1,3 and A=(aij)∈M3 Prove that detA=0.b) Let z1,z2,…,z2n∈C∗,n≥3 such that ∣z1∣=∣z2∣=…=∣zn+3∣ and argz1≥argz2≥…≥arg(zn+3). If bij=∣zi−zj+n∣,i,j=1,n and B=(bij)∈Mn, prove that detB=0.