MathDB
Romania District Olympiad 2004 - Grade XI

Source:

April 10, 2011
vectorlinear algebramatrixlinear algebra unsolved

Problem Statement

a) Let x1,x2,x3,y1,y2,y3Rx_1,x_2,x_3,y_1,y_2,y_3\in \mathbb{R} and aij=sin(xiyj), i,j=1,3a_{ij}=\sin(x_i-y_j),\ i,j=\overline{1,3} and A=(aij)M3A=(a_{ij})\in \mathcal{M}_3 Prove that detA=0\det A=0.
b) Let z1,z2,,z2nC, n3z_1,z_2,\ldots,z_{2n}\in \mathbb{C}^*,\ n\ge 3 such that z1=z2==zn+3|z_1|=|z_2|=\ldots=|z_{n+3}| and argz1argz2arg(zn+3)\arg z_1\ge \arg z_2\ge \ldots\ge \arg(z_{n+3}). If bij=zizj+n, i,j=1,nb_{ij}=|z_i-z_{j+n}|,\ i,j=\overline{1,n} and B=(bij)MnB=(b_{ij})\in \mathcal{M}_n, prove that detB=0\det B=0.