MathDB
an elegant identity in elements of a triangle

Source: Moldova 2007 IMO-BMO TST III problem 3

March 24, 2007
geometryinradiuscircumcircletrigonometrygeometry proposed

Problem Statement

Consider a triangle ABCABC, with corresponding sides a,b,ca,b,c, inradius rr and circumradius RR. If rA,rB,rCr_{A}, r_{B}, r_{C} are the radii of the respective excircles of the triangle, show that a2(2rArrBrC)+b2(2rBrrArC)+c2(2rCrrArB)=4(R+3r)a^{2}\left(\frac 2{r_{A}}-\frac{r}{r_{B}r_{C}}\right)+b^{2}\left(\frac 2{r_{B}}-\frac{r}{r_{A}r_{C}}\right)+c^{2}\left(\frac 2{r_{C}}-\frac{r}{r_{A}r_{B}}\right)=4(R+3r)