MathDB
Deduce cosecant exression

Source: IMO LongList 1988, Ireland 3, Problem 44 of ILL

November 3, 2005
trigonometryalgebra unsolvedalgebra

Problem Statement

Let 1<x<1.-1 < x < 1. Show that k=061x212xcos(2πk7)+x2=7(1+x7)(1x7). \sum^{6}_{k=0} \frac{1 - x^2}{1 - 2 \cdot x \cdot \cos \left( \frac{2 \cdot \pi \cdot k }{7} \right) + x^2} = \frac{7 \cdot \left( 1 + x^7 \right)}{\left( 1 - x^7 \right)}. Deduce that csc2(x+π7)+csc2(2x+π7)+csc2(3x+π7)=8. \csc^2\left( x + \frac{\pi}{7} \right) + \csc^2\left(2 \cdot x + \frac{\pi}{7} \right) + \csc^2\left(3 \cdot x + \frac{\pi}{7} \right) = 8.