MathDB
nice and hard inequality

Source: Romanian ROM TST 2004, problem 12, created by Harazi

May 3, 2004
inequalitiesinductionn-variable inequalityRomanian TST2004

Problem Statement

Let n2n\geq 2 be an integer and let a1,a2,,ana_1,a_2,\ldots,a_n be real numbers. Prove that for any non-empty subset S{1,2,3,,n}S\subset \{1,2,3,\ldots, n\} we have (iSai)21ijn(ai++aj)2. \left( \sum_{i \in S} a_i \right)^2 \leq \sum_{1\leq i \leq j \leq n } (a_i + \cdots + a_j ) ^2 . Gabriel Dospinescu