MathDB
2016 Algebra #7

Source:

December 24, 2016

Problem Statement

Determine the smallest positive integer n3n \ge 3 for which A210n(mod2170) A \equiv 2^{10n} \pmod{2^{170}} where AA denotes the result when the numbers 2102^{10}, 2202^{20}, \dots, 210n2^{10n} are written in decimal notation and concatenated (for example, if n=2n=2 we have A=10241048576A = 10241048576).