MathDB
Problems
Contests
National and Regional Contests
Cuba Contests
Cuba MO
2003 Cuba MO
2
p/q = 1-1/2+1/3+...+1/1335
p/q = 1-1/2+1/3+...+1/1335
Source: 2003 Cuba MO 2.2
September 15, 2024
number theory
divides
Problem Statement
Prove that if
p
q
=
1
−
1
2
+
1
3
−
1
4
+
.
.
.
−
1
1334
+
1
1335
\frac{p}{q}=1-\frac{1}{2} + \frac{1}{3}- \frac{1}{4} + ... -\frac{1}{1334} + \frac{1}{1335}
q
p
=
1
−
2
1
+
3
1
−
4
1
+
...
−
1334
1
+
1335
1
where
p
,
q
∈
Z
+
p, q \in Z_+
p
,
q
∈
Z
+
then
p
p
p
is divisible by
2003
2003
2003
.
Back to Problems
View on AoPS