MathDB
Pingsheng Number

Source: 2023 China Southeast MO Grade 10 Day 1 Problem 4

July 30, 2023
combinatorics

Problem Statement

Given an integer n2n\geq 2. Call a positive integer T{T} Pingsheng Number, if there exists pairwise different non empty subsets A1,A2,,AmA_1,A_2,\cdots ,A_m (m3)(m\geq 3) of set S={1,2,,n},S=\{1,2,\cdots ,n\}, satisfying T=i=1mAi,T=\sum\limits_{i=1}^m|A_i|, and for p,q,r{1,2,,m},pq,qr,rp,\forall p,q,r\in\{1,2,\cdots ,m\},p\neq q,q\neq r,r\neq p, we have Ap(AqAr)=A_p\cap(A_q\triangle A_r)=\varnothing or Ap(AqAr).A_p\subseteq (A_q\triangle A_r). Find the max Pingsheng Number.