MathDB
fixed circle, starting with two intersecting circles and an orthocenter

Source: Ukrainian Geometry Olympiad 2017, IX p3, X p2

December 12, 2018
geometryfixedintersectcirclesLocusLocus problems

Problem Statement

Circles w1,w2{w}_{1},{w}_{2} intersect at points A1{{A}_{1}} and A2{{A}_{2}} . Let BB be an arbitrary point on the circle w1{{w}_{1}}, and line BA2B{{A}_{2}} intersects circle w2{{w}_{2}} at point CC. Let HH be the orthocenter of ΔBA1C\Delta B{{A}_{1}}C. Prove that for arbitrary choice of point BB, the point HH lies on a certain fixed circle.