MathDB
Ukraine 2007

Source:

June 26, 2007
inequalitiesinequalities proposed

Problem Statement

{a,b,c}(16,+)\{a,b,c\}\subset\left(\frac{1}{\sqrt6},+\infty\right) such that a2+b2+c2=1.a^{2}+b^{2}+c^{2}=1. Prove that 1+a22a2+3abc2+1+b22b2+3bca2+1+c22c2+3cab22(a+b+c).\frac{1+a^{2}}{\sqrt{2a^{2}+3ab-c^{2}}}+\frac{1+b^{2}}{\sqrt{2b^{2}+3bc-a^{2}}}+\frac{1+c^{2}}{\sqrt{2c^{2}+3ca-b^{2}}}\ge2(a+b+c).