MathDB
Problems
Contests
National and Regional Contests
Russia Contests
Soros Olympiad in Mathematics
VII Soros Olympiad 2000 - 01
8.9
(a+b)(b+c)(a+c)/(abc) (VII Soros Olympiad 2000-01 R1 8.9)
(a+b)(b+c)(a+c)/(abc) (VII Soros Olympiad 2000-01 R1 8.9)
Source:
July 27, 2021
algebra
Problem Statement
It is known about the numbers
a
,
b
a, b
a
,
b
and
c
c
c
that
a
b
+
c
−
a
=
b
a
+
c
−
b
=
c
a
+
b
−
c
\frac{a}{b+c-a}=\frac{b}{a + c-b}= \frac{c}{a + b-c}
b
+
c
−
a
a
=
a
+
c
−
b
b
=
a
+
b
−
c
c
.What values can an expression take
(
a
+
b
)
(
b
+
c
)
(
a
+
c
)
a
b
c
\frac{(a + b) (b + c) (a + c)}{abc}
ab
c
(
a
+
b
)
(
b
+
c
)
(
a
+
c
)
?
Back to Problems
View on AoPS