MathDB
Problems
Contests
National and Regional Contests
Romania Contests
Romania - Local Contests
Nicolae Păun
2007 Nicolae Păun
4
Hard base 10 number theory
Hard base 10 number theory
Source:
December 15, 2019
number theory
base 10
AM-GM
Problem Statement
Prove that for any natural number
n
,
n,
n
,
there exists a number having
n
+
1
n+1
n
+
1
decimal digits, namely,
k
0
,
k
1
,
k
2
,
…
,
k
n
k_0,k_1,k_2,\ldots ,k_n
k
0
,
k
1
,
k
2
,
…
,
k
n
, and a
(n+1)-tuple
,
\text{(n+1)-tuple},
(n+1)-tuple
,
say
(
ϵ
0
,
ϵ
1
,
ϵ
2
…
,
ϵ
n
)
∈
{
−
1
,
1
}
n
+
1
,
\left( \epsilon_0 ,\epsilon_1 ,\epsilon_2\ldots ,\epsilon_n \right)\in\{-1,1\}^{n+1} ,
(
ϵ
0
,
ϵ
1
,
ϵ
2
…
,
ϵ
n
)
∈
{
−
1
,
1
}
n
+
1
,
that satisfies:
1
≤
∏
j
=
0
n
(
2
+
j
)
k
j
⋅
ϵ
j
≤
2
1
0
n
−
1
1\le \prod_{j=0}^n (2+j)^{k_j\cdot \epsilon_j}\le \sqrt[10^n-1]{2}
1
≤
j
=
0
∏
n
(
2
+
j
)
k
j
⋅
ϵ
j
≤
1
0
n
−
1
2
Sorin Rădulescu and Ion Savu
Back to Problems
View on AoPS