MathDB
Binomial sum is divisible by 2^(n-1) - not that surprising

Source:

February 11, 2006
floor functioncombinatorics proposedcombinatorics

Problem Statement

Prove that the sum: Sn=(n1)+(n3)2005+(n5)20052+...=k=0n12(n2k+1)2005k S_n=\binom{n}{1}+\binom{n}{3}\cdot 2005+\binom{n}{5}\cdot 2005^2+...=\sum_{k=0}^{\left\lfloor\frac{n-1}{2}\right\rfloor}\binom{n}{2k+1}\cdot 2005^k is divisible by 2n12^{n-1} for any positive integer nn.