MathDB
VJIMC 2015 Category II, Problem 4

Source: VJIMC2015

August 10, 2015
integrationcollege contestsreal analysis

Problem Statement

Problem 4 Find all continuously differentiable functions f:RR f : \mathbb{R} \rightarrow \mathbb{R} , such that for every a0a \geq 0 the following relation holds: D(a)xf(ayx2+y2) dx dy dz=πa38(f(a)+sina1) ,\iiint \limits_{D(a)} xf \left( \frac{ay}{\sqrt{x^2+y^2}} \right) \ dx \ dy\ dz = \frac{\pi a^3}{8} (f(a) + \sin a -1)\ , where D(a)={(x,y,z) : x2+y2+z2a2 , yx3} .D(a) = \left\{ (x,y,z)\ :\ x^2+y^2+z^2 \leq a^2\ , \ |y|\leq \frac{x}{\sqrt{3}} \right\}\ .