MathDB
GCD of two functions a constant polynomial

Source: Canada Repêchage 2014/1

June 18, 2016
functionalgebrapolynomialnumber theorygreatest common divisor

Problem Statement

Let f:ZZ+f : \mathbb{Z} \rightarrow \mathbb{Z}^+ be a function, and define h:Z×ZZ+h : \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z}^+ by h(x,y)=gcd(f(x),f(y))h(x, y) = \gcd (f(x), f(y)). If h(x,y)h(x, y) is a two-variable polynomial in xx and yy, prove that it must be constant.