MathDB
Problems
Contests
National and Regional Contests
Romania Contests
JBMO TST - Romania
2003 Junior Balkan Team Selection Tests - Romania
1
1 + 3/(a+b+c)>= 6/(ab+bc+ca) if a,b,c>0 with abc = 1
1 + 3/(a+b+c)>= 6/(ab+bc+ca) if a,b,c>0 with abc = 1
Source: 2003 Romania JBMO TST 2.1
June 1, 2020
algebra
inequalities
Problem Statement
Let
a
,
b
,
c
a, b, c
a
,
b
,
c
be positive real numbers with
a
b
c
=
1
abc = 1
ab
c
=
1
. Prove that
1
+
3
a
+
b
+
c
≥
6
a
b
+
b
c
+
c
a
1 + \frac{3}{a+b+c}\ge \frac{6}{ab+bc+ca}
1
+
a
+
b
+
c
3
≥
ab
+
b
c
+
c
a
6
Back to Problems
View on AoPS