MathDB
a,b,c

Source: Iranian National Olympiad (3rd Round) 2002

October 1, 2006
inequalitiesinequalities proposed

Problem Statement

Let a,b,cRn,a+b+c=0a,b,c\in\mathbb R^{n}, a+b+c=0 and λ>0\lambda>0. Prove that cyclea+b+(2λ+1)ca+b+c(2λ+3)3\prod_{cycle}\frac{|a|+|b|+(2\lambda+1)|c|}{|a|+|b|+|c|}\geq(2\lambda+3)^{3}