MathDB
Problems
Contests
National and Regional Contests
Iran Contests
Iran MO (3rd Round)
2002 Iran MO (3rd Round)
1
a,b,c
a,b,c
Source: Iranian National Olympiad (3rd Round) 2002
October 1, 2006
inequalities
inequalities proposed
Problem Statement
Let
a
,
b
,
c
∈
R
n
,
a
+
b
+
c
=
0
a,b,c\in\mathbb R^{n}, a+b+c=0
a
,
b
,
c
∈
R
n
,
a
+
b
+
c
=
0
and
λ
>
0
\lambda>0
λ
>
0
. Prove that
∏
c
y
c
l
e
∣
a
∣
+
∣
b
∣
+
(
2
λ
+
1
)
∣
c
∣
∣
a
∣
+
∣
b
∣
+
∣
c
∣
≥
(
2
λ
+
3
)
3
\prod_{cycle}\frac{|a|+|b|+(2\lambda+1)|c|}{|a|+|b|+|c|}\geq(2\lambda+3)^{3}
cyc
l
e
∏
∣
a
∣
+
∣
b
∣
+
∣
c
∣
∣
a
∣
+
∣
b
∣
+
(
2
λ
+
1
)
∣
c
∣
≥
(
2
λ
+
3
)
3
Back to Problems
View on AoPS