MathDB
System of equations

Source: Brazilian University Olympics 2019

November 18, 2019
calculussystem of equationscollege contestsalgebraBrazilian Undergrad MOBrazilian Undergrad MO 2019

Problem Statement

Let a,b,ca,b,c be constants and a,b,ca,b,c are positive real numbers. Prove that the equations 2x+y+z=c2+z2+c2+y22x+y+z=\sqrt{c^2+z^2}+\sqrt{c^2+y^2} x+2y+z=b2+x2+b2+z2x+2y+z=\sqrt{b^2+x^2}+\sqrt{b^2+z^2} x+y+2z=a2+x2+a2+y2x+y+2z=\sqrt{a^2+x^2}+\sqrt{a^2+y^2} have exactly one real solution (x,y,z)(x,y,z) with x,y,z0x,y,z \geq 0.