MathDB
exist k + 1 people where any two of them have not played each other

Source: 2010 Brazil IMO TST 3.4

July 24, 2021
combinatorics

Problem Statement

6k+26k+2 people play in odd or even championship. In each odd or even match they participate exactly two people. Six rounds have been arranged so that in each round there are 3k+13k + 1 simultaneous matches, and no player participates in two games of the same round. It is known that two people do not play with each other more than one turn. Prove that there are k+1k + 1 people where any two of them have not played each other.
[hide=original wording] 6k+2 pessoas jogam em campeonato de par ou impar. Em cada partida de par ou impar participam exatamente duas pessoas. Seis rodadas foram organizadas, de modo que, em cada rodada, ha 3k + 1 partidas simultaneas, e nenhum jogador participa de dois jogos da mesma rodada. Sabe-se que duas pessoas nao jogam entre si mais de uma vez. Prove que existem k + 1 pessoas em que quaisquer duas delas nao jogaram entre si.