MathDB
arithmetic progression of maximum length l

Source: Moldova TST 1998

August 8, 2023
arithmetic sequence

Problem Statement

Let M={1nnN}M=\{\frac{1}{n}|n\in\mathbb{N}\}. Numbers a1,a2,,ala_1,a_2,\ldots,a_l from an arithmetic progression of maximum length ll (l3)(l\geq 3) if they verify the properties: a) numbers a1,a2,,ala_1,a_2,\ldots,a_l from a finite arithmetic progression; b) there is no number bMb\in M such that numbers b,a1,a2,,alb,a_1,a_2,\ldots,a_l or a1,a2,,al,ba_1,a_2,\ldots,a_l, b form a finite arithmetic progression. For example numbers 16,13,12M\frac{1}{6},\frac{1}{3},\frac{1}{2}\in M form an arithmetic progression of maximum length 33. a) FInd an arithmetic progression of maximum length 19981998. b) Prove that there exist maximum arithmetic progressions of any length l3l \geq 3.