MathDB
Polish MO Finals 2018, Problem 3

Source:

April 18, 2018
functional equationalgebraPolandTST

Problem Statement

Find all real numbers cc for which there exists a function f ⁣:RRf\colon\mathbb R\rightarrow \mathbb R such that for each x,yRx, y\in\mathbb R it's true that f(f(x)+f(y))+cxy=f(x+y).f(f(x)+f(y))+cxy=f(x+y).