MathDB
Limits of integrals

Source: Romanian District Olympiad 2023 12.3

March 11, 2023
real analysisIntegrallimit

Problem Statement

Let f:[0,1]Rf:[0,1]\to\mathbb{R} be a continuous function. Prove that limn01f(xn) dx=f(0).\lim_{n\to\infty}\int_0^1 f(x^n) \ dx=f(0).Furthermore, if f(0)=0f(0)=0 and ff is right-differentiable in 00{}, prove that the limits \lim_{\varepsilon\to0}\int_\varepsilon^1\frac{f(x)}{x} \ dx \text{and} \lim_{n\to\infty}\left(n\int_0^1f(x^n) \ dx\right)exist, are finite and are equal.