MathDB
Proving a combinatorial identity and finding expression

Source:

October 30, 2010
inductioncombinatorics proposedcombinatorics

Problem Statement

If Cnp=n!p!(np)!(p1)C^p_n=\frac{n!}{p!(n-p)!} (p \ge 1), prove the identity Cnp=Cn1p1+Cn2p1++Cpp1+Cp1p1C^p_n=C^{p-1}_{n-1} + C^{p-1}_{n-2} + \cdots + C^{p-1}_{p} + C^{p-1}_{p-1} and then evaluate the sum S=123+234++979899.S = 1\cdot 2 \cdot 3 + 2 \cdot 3 \cdot 4 + \cdots + 97 \cdot 98 \cdot 99.