MathDB
Problems
Contests
National and Regional Contests
Russia Contests
Soros Olympiad in Mathematics
I Soros Olympiad 1994-95 (Rus + Ukr)
11.1
(2^x +3^x)/(3^x +4^x)<=5/7 if x>=1 (I Soros Olympiad 1994-95 R1 11.1)
(2^x +3^x)/(3^x +4^x)<=5/7 if x>=1 (I Soros Olympiad 1994-95 R1 11.1)
Source:
July 31, 2021
algebra
inequalities
Problem Statement
Prove that for real
x
≥
1
x\ge 1
x
≥
1
, holds the inequality
2
x
+
3
x
3
x
+
4
x
≤
5
7
\frac{2^x +3^x }{3^x +4^x} \le \frac57
3
x
+
4
x
2
x
+
3
x
≤
7
5
Back to Problems
View on AoPS