MathDB
sin x+cos x=1/5 ==> find tan x

Source: 1978 AHSME Problem 15

June 6, 2014
trigonometryfunctionquadraticsAMC

Problem Statement

If sinx+cosx=1/5\sin x+\cos x=1/5 and 0x<π0\le x<\pi, then tanx\tan x is
<spanclass=latexbold>(A)</span>43<spanclass=latexbold>(B)</span>34<spanclass=latexbold>(C)</span>34<spanclass=latexbold>(D)</span>43<span class='latex-bold'>(A) </span>-\frac{4}{3}\qquad<span class='latex-bold'>(B) </span>-\frac{3}{4}\qquad<span class='latex-bold'>(C) </span>\frac{3}{4}\qquad<span class='latex-bold'>(D) </span>\frac{4}{3}\qquad
<spanclass=latexbold>(E)</span>not completely determined by the given information<span class='latex-bold'>(E) </span>\text{not completely determined by the given information}