MathDB
Miklós Schweitzer 1985, Problem 9

Source: Miklós Schweitzer 1985

September 5, 2016
Miklos Schweitzercollege contestscomplex analysisfunction

Problem Statement

Let D={zC ⁣:z<1}D=\{ z\in \mathbb C\colon |z|<1\} and D={wC ⁣:w=1}D=\{ w\in \mathbb C \colon |w|=1\}. Prove that if for a function f ⁣:D×BCf\colon D\times B\rightarrow\mathbb C the equality f(az+bbz+a,aw+bbw+a)=f(z,w)+f(ba,aw+bbw+a)f\left( \frac{az+b}{\overline{b}z+\overline{a}}, \frac{aw+b}{\overline{b}w+\overline a} \right)=f(z,w)+f\left(\frac{b}{\overline a}, \frac{aw+b}{\overline b w+\overline a} \right) holds for all zD,wBz\in D, w\in B and a,bC,a2=b2+1a, b\in \mathbb C,|a|^2=|b|^2+1, then there is a function L ⁣:(0,)CL\colon (0, \infty )\rightarrow \mathbb C satisfying L(pq)=L(p)+L(q)for allp,q>0L(pq)=L(p)+L(q)\,\,\,\text{for all}\,\,\, p,q > 0 such that ff can be represented as f(z,w)=L(1z2wz2)for allzD,wBf(z,w)=L\left( \frac{1-|z|^2}{|w-z|^2}\right)\,\,\,\text{for all}\,\,\, z\in D, w\in B. [Gy. Maksa]