Let D={z∈C:∣z∣<1} and D={w∈C:∣w∣=1}. Prove that if for a function f:D×B→C the equality
f(bz+aaz+b,bw+aaw+b)=f(z,w)+f(ab,bw+aaw+b)
holds for all z∈D,w∈B and a,b∈C,∣a∣2=∣b∣2+1, then there is a function L:(0,∞)→C satisfying
L(pq)=L(p)+L(q)for allp,q>0
such that f can be represented as
f(z,w)=L(∣w−z∣21−∣z∣2)for allz∈D,w∈B.
[Gy. Maksa]