MathDB
Problems
Contests
National and Regional Contests
Japan Contests
Today's Calculation Of Integral
2010 Today's Calculation Of Integral
633
Today's calculation of Integral 633
Today's calculation of Integral 633
Source:
August 4, 2010
calculus
integration
calculus computations
Problem Statement
Let
f
(
x
)
f(x)
f
(
x
)
be a differentiable function. Find the value of
x
x
x
for which
{
f
(
x
)
}
2
+
(
e
+
1
)
f
(
x
)
+
1
+
e
2
−
2
∫
0
x
f
(
t
)
d
t
−
2
f
(
x
)
∫
0
x
f
(
t
)
d
t
+
2
{
∫
0
x
f
(
t
)
d
t
}
2
\{f(x)\}^2+(e+1)f(x)+1+e^2-2\int_0^x f(t)dt-2f(x)\int_0^x f(t)dt+2\left\{\int_0^x f(t)dt\right\}^2
{
f
(
x
)
}
2
+
(
e
+
1
)
f
(
x
)
+
1
+
e
2
−
2
∫
0
x
f
(
t
)
d
t
−
2
f
(
x
)
∫
0
x
f
(
t
)
d
t
+
2
{
∫
0
x
f
(
t
)
d
t
}
2
is minimized.1978 Tokyo Medical College entrance exam
Back to Problems
View on AoPS