MathDB
a/b+b/c+c/a>= 1/ab+1/bc+1/ca if a,b,c>0 and a+b+c>=1/a+1/b+1/c

Source: 2009 Romania JBMO TST 3.1

June 1, 2020
inequalitiesalgebra

Problem Statement

Let a,b,ca, b, c be positive real number such that a+b+c1a+1b+1ca + b + c \ge \frac{1}{a}+ \frac{1}{b}+ \frac{1}{c} . Prove that ab+bc+ca1ab+1bc+1ca \frac{a}{b}+ \frac{b}{c}+ \frac{c}{a}\ge \frac{1}{ab}+ \frac{1}{bc}+ \frac{1}{ca} .