MathDB
Problems
Contests
National and Regional Contests
Romania Contests
JBMO TST - Romania
2009 Junior Balkan Team Selection Tests - Romania
1
a/b+b/c+c/a>= 1/ab+1/bc+1/ca if a,b,c>0 and a+b+c>=1/a+1/b+1/c
a/b+b/c+c/a>= 1/ab+1/bc+1/ca if a,b,c>0 and a+b+c>=1/a+1/b+1/c
Source: 2009 Romania JBMO TST 3.1
June 1, 2020
inequalities
algebra
Problem Statement
Let
a
,
b
,
c
a, b, c
a
,
b
,
c
be positive real number such that
a
+
b
+
c
≥
1
a
+
1
b
+
1
c
a + b + c \ge \frac{1}{a}+ \frac{1}{b}+ \frac{1}{c}
a
+
b
+
c
≥
a
1
+
b
1
+
c
1
. Prove that
a
b
+
b
c
+
c
a
≥
1
a
b
+
1
b
c
+
1
c
a
\frac{a}{b}+ \frac{b}{c}+ \frac{c}{a}\ge \frac{1}{ab}+ \frac{1}{bc}+ \frac{1}{ca}
b
a
+
c
b
+
a
c
≥
ab
1
+
b
c
1
+
c
a
1
.
Back to Problems
View on AoPS