MathDB
Italian WinterCamps test07 Problem5

Source: ISL 2006, A1, AIMO 2007, TST 1, P1

January 29, 2007
floor functionalgebraSequencerecurrence relationPeriodic sequenceIMO Shortlist

Problem Statement

A sequence of real numbers a0, a1, a2, a_{0},\ a_{1},\ a_{2},\dots is defined by the formula a_{i \plus{} 1} \equal{} \left\lfloor a_{i}\right\rfloor\cdot \left\langle a_{i}\right\rangle\qquad\text{for}  i\geq 0; here a0a_0 is an arbitrary real number, ai\lfloor a_i\rfloor denotes the greatest integer not exceeding aia_i, and ai=aiai\left\langle a_i\right\rangle=a_i-\lfloor a_i\rfloor. Prove that ai=ai+2a_i=a_{i+2} for ii sufficiently large.
Proposed by Harmel Nestra, Estionia