MathDB
S 37

Source:

May 25, 2007
trigonometryfloor functionMiscellaneous Problems

Problem Statement

Let nn and kk are integers with n>0n>0. Prove that 12nm=1n1cotπmnsin2πkmn={knkn12if kn0otherwise.-\frac{1}{2n}\sum^{n-1}_{m=1}\cot \frac{\pi m}{n}\sin \frac{2\pi km}{n}= \begin{cases}\tfrac{k}{n}-\lfloor\tfrac{k}{n}\rfloor-\frac12 & \text{if }k|n \\ 0 & \text{otherwise}\end{cases}.