MathDB
Problems
Contests
National and Regional Contests
PEN Problems
PEN S Problems
37
S 37
S 37
Source:
May 25, 2007
trigonometry
floor function
Miscellaneous Problems
Problem Statement
Let
n
n
n
and
k
k
k
are integers with
n
>
0
n>0
n
>
0
. Prove that
−
1
2
n
∑
m
=
1
n
−
1
cot
π
m
n
sin
2
π
k
m
n
=
{
k
n
−
⌊
k
n
⌋
−
1
2
if
k
∣
n
0
otherwise
.
-\frac{1}{2n}\sum^{n-1}_{m=1}\cot \frac{\pi m}{n}\sin \frac{2\pi km}{n}= \begin{cases}\tfrac{k}{n}-\lfloor\tfrac{k}{n}\rfloor-\frac12 & \text{if }k|n \\ 0 & \text{otherwise}\end{cases}.
−
2
n
1
m
=
1
∑
n
−
1
cot
n
πm
sin
n
2
πkm
=
{
n
k
−
⌊
n
k
⌋
−
2
1
0
if
k
∣
n
otherwise
.
Back to Problems
View on AoPS