MathDB
a^2+b^2+c^2+abc=4 condition

Source: Israeli Olympic Revenge 2021, Problem 4

August 29, 2021
inequalities

Problem Statement

Prove that the inequality 4a+bc+4+4b+ca+4+4c+ab+41+12a+1+12b+1+12c+1\frac{4}{a+bc+4}+\frac{4}{b+ca+4}+\frac{4}{c+ab+4}\le 1+\frac{1}{2a+1}+\frac{1}{2b+1}+\frac{1}{2c+1} holds for all positive reals a,b,ca,b,c such that a2+b2+c2+abc=4a^2+b^2+c^2+abc=4.