MathDB
Problems
Contests
National and Regional Contests
Israel Contests
Israel National Olympiad
2013 Israel National Olympiad
6
Israel 2013 Q6 - Fractional inequality
Israel 2013 Q6 - Fractional inequality
Source: Israel National Olympiad 2013 Q6
August 8, 2019
algebra
Inequality
Fractions
inequalities
Problem Statement
Let
x
1
,
.
.
.
,
x
n
x_1,...,x_n
x
1
,
...
,
x
n
be positive real numbers, satisfying
x
1
+
⋯
+
x
n
=
n
x_1+\dots+x_n=n
x
1
+
⋯
+
x
n
=
n
. Prove that
x
1
x
2
+
x
2
x
3
+
⋯
+
x
n
−
1
x
n
+
x
n
x
1
≤
4
x
1
⋅
x
2
⋅
⋯
⋅
x
n
+
n
−
4
\frac{x_1}{x_2}+\frac{x_2}{x_3}+\dots+\frac{x_{n-1}}{x_n}+\frac{x_n}{x_1}\leq\frac{4}{x_1\cdot x_2\cdot\dots\cdot x_n}+n-4
x
2
x
1
+
x
3
x
2
+
⋯
+
x
n
x
n
−
1
+
x
1
x
n
≤
x
1
⋅
x
2
⋅
⋯
⋅
x
n
4
+
n
−
4
.
Back to Problems
View on AoPS