MathDB
max of x^p+y^p+z^p when (x-1)^2 +(y-1)^2+(z-1)^2 = 27, p= 1+1/2+...+1/2^5

Source: KJMO 2014 p6

May 2, 2019
maximumalgebrainequalities

Problem Statement

Let p=1+12+122+123+124+125.p = 1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+\frac{1}{2^5}. For nonnegative reals x,y,zx, y,z satisfying (x1)2+(y1)2+(z1)2=27,(x-1)^2 + (y-1)^2 + (z-1)^2 = 27, find the maximum value of xp+yp+zp.x^p + y^p + z^p.