MathDB
Orthic triangle inequality

Source: IMO Shortlist 1993, Canada 2

March 15, 2006
inequalitiesgeometrycircumcircleinradiustrigonometryIMO Shortlistgeometric inequality

Problem Statement

Let triangle ABCABC be such that its circumradius is R=1.R = 1. Let rr be the inradius of ABCABC and let pp be the inradius of the orthic triangle ABCA'B'C' of triangle ABC.ABC. Prove that p113(1+r)2. p \leq 1 - \frac{1}{3 \cdot (1+r)^2}. [hide="Similar Problem posted by Pascual2005"]
Let ABCABC be a triangle with circumradius RR and inradius rr. If pp is the inradius of the orthic triangle of triangle ABCABC, show that pR1(1+rR)23\frac{p}{R} \leq 1 - \frac{\left(1+\frac{r}{R}\right)^2}{3}.
Note. The orthic triangle of triangle ABCABC is defined as the triangle whose vertices are the feet of the altitudes of triangle ABCABC.
SOLUTION 1 by mecrazywong:
p=2RcosAcosBcosC,1+rR=1+4sinA/2sinB/2sinC/2=cosA+cosB+cosCp=2R\cos A\cos B\cos C,1+\frac{r}{R}=1+4\sin A/2\sin B/2\sin C/2=\cos A+\cos B+\cos C. Thus, the ineqaulity is equivalent to 6cosAcosBcosC+(cosA+cosB+cosC)236\cos A\cos B\cos C+(\cos A+\cos B+\cos C)^2\le3. But this is easy since cosA+cosB+cosC3/2,cosAcosBcosC1/8\cos A+\cos B+\cos C\le3/2,\cos A\cos B\cos C\le1/8.
SOLUTION 2 by Virgil Nicula:
I note the inradius rr' of a orthic triangle.
Must prove the inequality rR113(1+rR)2.\frac{r'}{R}\le 1-\frac 13\left( 1+\frac rR\right)^2.
From the wellknown relations r=2RcosAcosBcosCr'=2R\cos A\cos B\cos C
and cosAcosBcosC18\cos A\cos B\cos C\le \frac 18 results rR14.\frac{r'}{R}\le \frac 14.
But 14113(1+rR)213(1+rR)234\frac 14\le 1-\frac 13\left( 1+\frac rR\right)^2\Longleftrightarrow \frac 13\left( 1+\frac rR\right)^2\le \frac 34\Longleftrightarrow
(1+rR)2(32)21+rR32rR122rR\left(1+\frac rR\right)^2\le \left(\frac 32\right)^2\Longleftrightarrow 1+\frac rR\le \frac 32\Longleftrightarrow \frac rR\le \frac 12\Longleftrightarrow 2r\le R (true).
Therefore, rR14113(1+rR)2rR113(1+rR)2.\frac{r'}{R}\le \frac 14\le 1-\frac 13\left( 1+\frac rR\right)^2\Longrightarrow \frac{r'}{R}\le 1-\frac 13\left( 1+\frac rR\right)^2.
SOLUTION 3 by darij grinberg:
I know this is not quite an ML reference, but the problem was discussed in Hyacinthos messages #6951, #6978, #6981, #6982, #6985, #6986 (particularly the last message).